
Complex string solutions of the self-dual Yang-Mills equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 689

(http://iopscience.iop.org/0305-4470/17/3/031)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 17 (1984) 689-707. Printed in Great Britain 

Complex string solutions of the self -dual Yang-Mills 
equations 

A D Burns 
Department of Mathematical Sciences, University of Durham, South Road, Durham 
DH18LE, UK 

Received 22 June 1983, in final form 22 September 1983 

Abstract. We present, using the Atiyah-Ward construction, a new class of non-singular 
complex solutions of the self-dual Yang-Mills equations, dimensionally reduced to the 
plane. 

1. Introduction 

In recent years there has been much progress in our understanding of the self-dual 
Y ang-Mills equations on compactified Euclidean 4-space S4, corresponding to instan- 
tons (Belavin er a1 1975), and in Euclidean 3-space R3 corresponding to monopoles 
in the Prasad-Sommerfield limit (Bogomolnyi 1976 and Prasad and Sommerfield 1975). 
Three different constructions (Ward 1977, Atiyah and Ward 1977, Atiyah et a1 1978, 
Nahm 1981 and Forgics er al 1981) have been developed to deal with these solutions, 
each with its own advantages in different situations. 

Despite these successes, some problems remain, in particular the following. 
(a) Little is known about how the above three constructions are related; clearly, 

more examples would help to shed light on this problem. 
(b) There is an obvious gap to be filled, and that is the construction and physical 

interpretation of non-singular self-dual gauge fields dimensionally reduced to Euclidean 
2-space R’. 

In this paper, we address ourselves to question (b). We shall consider the 
dimensional reduction of a pure SU(2) Yang-Mills theory from four to two dimensions. 
In analogy with the case of monopoles, the components A3, A4 of the gauge potentials 
now become effective Higgs fields @*, O2 say, and the Yang-Mills Lagrangian reduces 
to 

~=~IIBI12+tII~i~lI12+311~i~2112+tll[~~, ~ 2 1 1 1 ~  

where i = 1,2,  B = F 1 2  = 4A2-d2A1 +[Al, A21, and llB112 = -2 Tr B2,  etc. So we have 
an SU(2) gauge field interacting with two adjoint Higgs fields with an extra interaction 
term 

V(@I, @2) =+Il[@1, @21112. 

This model has also been considered by Nielsen and Olesen (1973), and Lohe 

We shall in fact construct classical solutions with the non-trivial boundary conditions 
(1977). 

11@1112 - a2 ,  IIW2 - b’ as (x l ,  XA + (1.1) 
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690 A D Burns 

so we should regard the potential V as the Bogomolny limit A + 0 of the potential 

V’(@1,@2) =411[@*, @211/2+a~(11@112- C 2 l 2  

where / I @ / 1 2  = / I @ , / 1 2  + / / @ 2 1 1 2 ,  c2  = a 2  + b2. 
The self-duality equations reduce to the Bogomolny equations 

B = [ @ ‘ I t  0 2 1 ,  Dial + D2@)2=0, D1@2-02@.1=0. (1.2) 

We shall construct solutions of (1.2) which are essentially the two-dimensional 
version of monopoles-we call these solutions ‘complex strings’ or ‘voidons’, for reasons 
soon to be made clear. The physical interpretation of these solutions is still somewhat 
tentative; however, in order to attempt to reproduce at the semi-classical level the 
successes of string models of hadrons, and string-like behaviour at strong coupling in 
lattice gauge theories, it seems natural to us to seek solutions of the classical equations 
of motion which depend on only two of the space coordinates. There are some apparent 
problems with this point of view-first there is the question of what, if anything, makes 
the boundary conditions (1.1) appear naturally. Some authors have pointed out 
( A m b j ~ r n  et a1 1979, A m b j ~ r n  and Olesen 1980a, b and ’t Hooft 1981) that pure 
non-abelian gauge degrees of freedom may give rise to some analogue of the Higgs 
mechanism. From this point of view, our boundary conditions appear quite natural- 
presumably, in a semi-classical approximation, one would have to integrate over all 
the solutions for all possible values of the characteristic mass c = ( a 2 +  b2)”2  and 
perhaps argue that the most significant contribution comes from those solutions with 
c of order AwD. 

Secondly, up to now, solutions of the self-dual Yang-Mills equations have been 
sought which are both real and non-singular. However, it is easy to prove that self-dual 
gauge fields in two dimensions which are both real and non-singular, and which arise 
from the Backlund transformation approach to  the Atiyah-Ward construction, must 
satisfy 

/ 1 @ 1 ( 2  3 c 2 ,  energy density 8 = 0 

so that the Higgs vacuum fills the whole of space. So, in order to find non-singular 
self-dual fields in two dimensions from the Atiyah-Ward Backlund transformations, 
we have to drop the reality condition, i.e. we must seek solutions with gauge group 
SL(2, e) ,  the complexification of SU(2). Real singular string-like solutions have been 
constructed by Saclioglu (1981). 

The condition which forces non-singular solutions to be either strictly complex or 
the vacuum is that the total energy density per unit length, or equivalently, the total 
action in the x1x2 plane must vanish. Our solutions represent soliton-like enhancements 
of positive energy density in a sea of negative energy density in such a way that the 
total energy density integrates out to zero-hence the term ‘voidon’.t The fact that 
the total action vanishes is an advantage in the semi-classical approximation. It is now 
fairly well established (Richard and Rouet 1981a, b, Lapedes and Mottala 1982, Abbott 
1982, Abbott and Zakrzewski 1983) that in the saddle point approximation to func- 
tional integrals, both real and complex saddle points are of equal importance. 
Moreover, the contribution of any particular saddle point is damped by a factor 
exp (-S/g2h), where S is its total action. Therefore, it is not unreasonable to expect 
that complex saddle points of zero total action provide the leading contributions in a 
semi-classical approximation to the functional integral, giving a contribution of roughly 
the same order as the real vacuum. Note further that the usual argument that 
f This term was first coined for complex solutions of zero total action by Dolan (1978). 
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D'"'= 

non-perturbative effects are small of order exp (-l /g2h) clearly does not apply to 
saddle points of zero total action. 

A0 

A- 1 

AP2 

&+I 

2. The Atiyah-Ward construction 

In this section we review the most basic details of the Atiyah-Ward construction, and 
establish notation, and some preliminary results. Further details may be found in 
Corrigan et a1 (1978), Corrigan and Goddard (1981), Prasad (1981) and Prasad and 
Rossi (1980). 

We use Yang variables 

y=gJ2(x1+ix2),  = g-Jz(xl - ixz), 

z = ~ ( x ,  - ix4), i = +J-Jz(x, + ix4), 

and we define twistor variables (U, 7 ~ ) ( w ,  7~ complex 2-spinors) by 

w = X T ,  x = x4+ix* cr, 7T # 0. 

We define coordinates (p ,  v, 5 )  of projective twistor space CP3 by l=  ~ T J ~ T ~ ,  

2p=wl/ . i r l ,  2u=w2/ r2 ,  i.e. 

p = ~ i [ ( x 3 - i x 4 ) + ( x l - i x z ) / ~ ] ,  

U = ~ i [ ( x l + i x z ) ~ - ( x 3 + i x 4 ) ] .  

Gauge potentials in the nth Atiyah-Ward ansatz a, may be described explicitly as 
follows. Define a A-chain to be a sequence of functions A , ( x ) ,  n e Z  satisfying the 
Cauchy-Riemann like conditions 

A1 A2 . . . An-1 

A0 A1 
A - i  Ao 

. . .  A0 

R-gauge equations in the nth ansatz a, is given by 

and non-singularity is equivalent to the non-vanishing of the determinant D',). 
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The A-chain equations are precisely the conditions that the generating function 

(2.3) 

depends only on the coordinates (p ,  v, 5 )  of CP3.  Conversely, the Laurent decomposi- 
tion of any analytic function A(p, v, 5 )  gives a A-chain. 

The patching matrix of the associated vector bundle over CP3 is given in the nth 
ansatz by 

We shall construct our solutions by explicitly integrating the A-chain equations, 
and then we shall deduce the form of the patching functions. It is possible to work in 
the other direction, but this seems to us less well motivated. 

In the construction of monopole solutions, the reduction to R3 is performed by 
demanding that the A-chain take the form 

An(x) = exp (iax4)Ln(x1, x2, ~ 3 ) .  

A,(x) =exp [i(ax3+ bx4)]Zn(x1, x2). 

(2.4) 

By analogy, we shall reduce to R2 by demanding that the A-chain take the form 

(2.5) 

Note that the A-chain equations imply that each A n  satisfies the four-dimensional 
Laplace equation, and hence that each d, satisfies the two-dimensional Helmholtz 
equation 

V2L" = c2Lw 

The following result, due to Prasad, guarantees that (2.4) gives the correct boundary 
conditions for monopole solutions of charge n in the n t t  ansatz. 

Theorem. Suppose the A-chain satisfies (2.4). Then the Higgs field @ = A4 and the 
energy density 8 in the nth ansatz are given by 

IJ@1)2 = a 2 - v 2  In D'"), 
8 = -$~211@.)J2 = -$v2v2 In ~ ' " 1 .  

This result has two immediate corollaries for the ansatz (2.5). 

Corollary 1 .  If the A-chain satisfies (2.5),  then the Higgs field (Dl =A3,  Q2=A4,  and 
the energy density 8 are given in the nth ansatz by 

l l @ 1 1 1 2  = a2-V' In D'"', 

:. 1 1 @ 1 1 2  = I I @ l I ( 2 +  1 1 @ 2 1 1 2  = c2  - 2V2 In D'"', 
) ( ~ ~ 1 1 ~  = b2 - V' In D'"', 

8 = -hV21)@1)12 = -i~~11@~11~ = -4v2v2 In D'"'. (2.6) 
Note that it is always possible to choose one of a, b to vanish, by performing an 

appropriate rotation in the x3x4 plane. 

Corollary 2. Suppose the A-chain satisfies (2.5). Then, if ( r ,  0) are cylindrical polar 
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coordinates in the x l x z  plane, we have in the nth ansatz 

( I @ 1 1 1 2 -  U'- nclr, 

1 1 @ 1 1 2  - cz( l  - 2n/ cr) ,  
% - - n c / 2 r 3 ,  as r+m. 

( ( @ 2 1 1 2  - b2 - nc/ r ,  

a s r + m ,  

(2.7) 

If E ( R )  is the total energy per unit length, or the total action, in a disc of radius 
R centred at the origin, then 

E ( R )  - n m / R  + 0 a s R + m .  (2.8) 

Hence the total energy per unit length in the x l x z  plane is zero. If moreover the 
gauge field is real, then 

11@)(2= c2  and % = O .  

Proof. We have A k ( x )  =exp [i(ux3+ bXq) ]&(Xl ,  x2)  where v z i k  = c2Ak. Hence 

b k  =ecrf,,(e)/JFr, 

D(")-  exp [i(ax3+ bx,)](e""'/(~r)"'~)~.(~) as r+m.  

So provided the field is non-singular, i.e. D'"' does not vanish, we have 

In D(")  - ncr + O(log r ) ,  

V2 In D'"' - nc/ r, V2V2 In D'") - nc/r2, 

and (2.7) follows immediately. Also 

E ( R )  = d 2 x % = $  5 d2x V211@~I12 
1xIsR / x l s R  

a s R + m .  

5 
=; dn. VIJ@lJ12 - n m / R  

xl=R 

For real gauge fields, we have 8 5 0 on R2, since the Killing form of a compact 
group is positive definite. So 

lR2 c ~ x  % ( x )  = 0 3  8 = 0 on R2 

8 = -+V2))@1)2 = 0, 
and 

- c2 as I + 

implies 

1 1 @ 1 1 2  = c2  on R'. 

It is tempting to conclude from the above result that all self-dual fields reduced to 
R2 have zero total action. However, the proof assumes that the field is constructed 
from the Backlund transformation approach to the Atiyah-Ward construction, which 
in turn assumes that the patching matrix is equivalent to one in upper triangular form. 
This latter condition is known to be true for instantons and monopoles, but still requires 
proof for fields satisfying our boundary conditionst. 

t This fact was pointed out to me by R S Ward. 
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In the next section, we shall construct axially symmetric solutions in each Atiyah- 
Ward ansatz. We shall call a solution occurring in the nth ansatz a solution of ‘charge’ 
n, though there is no obvious definition of topological charge; the dependence on n 
seems to be entirely contained in the boundary conditions (2.7). 

3. The axially symmetric N-string solutions 

We construct the axially symmetric N-string solutions following Prasad’s construction 
of the axially symmetric N-monopole solutions (Prasad 1981, Prasad and Rossi 1980). 
We find that, as is the case for monopoles, for N > 1 the energy density is concentrated 
in an annulus centred at the origin, with the radius of the annulus increasing as N 
increases. The construction of the axially symmetric N-strings is, in contrast, much 
simpler than the corresponding construction for monopoles; the axially symmetric 
N-string solution is obtained simply by applying the BI transformations N times to  
the a, ansatz for the single string. This class of solutions was also found, independently, 
by S Rouhani. 

Recall the construction of the BPS monopole in the a,  ansatz. One defines 

41 = exp (iax4)Ao(xl, x2, xJ, V2Ao = a2Ao 

and to obtain a spherically symmetric, non-singular field configuration, one chooses 
A, to be the spherically symmetric non-vanishing solution of the three-dimensional 
Helmholtz equation, namely 

A, = sinh arl r. 

Similarly, to construct the 1-string solution, we define 

4,  = exp Max3+ bx4)lAO(x1, x2), V2A, = c2Ao 

and choose A, to be the non-vanishing axially symmetric solution of the two- 
dimensional Helmholtz equation, namely 

A. = Io( cr) 

where Zo is the modified Bessel function of zeroth order. 
This gives us the field configuration 

-b I 
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Ij(n)= 

695 

Io I1 12 . .  . I,-1 

I1 Io I1 
I2 Il 1, : . 

I n - I  IO . . .  

I , (cr )  x1-ix2 
a ic- - 

Io(cr) r A 4  = -2 
I,(cr) xl+ix2  
Io(cr) r 

ic- - -U 

/ 1 ~ ~ ( j ' =  c2 [ ~ ~ ( c r ) ~ / ~ ~ ( c r ) ~ ] -  a2 ,  

'i 
Using (2.6), with lo (cr )  we find 

= ~ ~ [ ~ ~ ( c r ) ~ / ~ ~ ( c r ) ~ ] -  b2,  

= c ~ [ ~ [ I ~ ( c ~ ) ~ / I , ( c ~ ) ~ ] -  11. 

But Il(x)/Zo(x) increases monotonically from zero to one as x increases from zero 
to infinity; hence increases monotonically from -c2 to c2 as r increases from zero 
to infinity. This is in contrast to the case of the BPS monopole, where the minimum 
of the norm of the Higgs field is zero, situated at the location of the monopole; indeed 
1 1 Q ( ( 2  is only allowed to become negative for strictly complex solutions, since the Killing 
form is positive definite on the Lie algebra of SU(2). 

Integrating the A-chain equations, starting with the above choice for a, (see the 
appendix), we find, in the a, ansatz: 

Din' = exp [in(ax,+ b~~)lIj(~), 
4, = exp[i(ax3 + ~ X ~ ) ] I Y ~ ) / I ~ ( ~ - ~ ) ,  

I .  

Non-singularity of the 1st and 2nd ansatze are automatic, since 

3 ' ) ( r )  = I ( c r )  > 0, i Y 2 ) ( r )  = Io(cr)2 - ~ ~ ( c r ) ~  > 0. 

Non-singularity for higher n has been checked numerically for n =s 5 .  It is found 
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that In E'.' increases monotonically with r, and assumes its asymptotic linear form 

In D(")  - ncr 

at around cr = 2n,  i.e. at a radius of about 2n  units of characteristic length. 
In figure 1, 11@112(r), E ( R )  and 8( r )  are plotted numerically for the axially symmetric 

N-string ( N =  1 to 5 ) ,  with the characteristic length c-l= 1.  Note that ll@1)* always 
takes the minimum -c2  at r = 0. This is easily checked analytically; a power series 

1 .o 
0 .5  

0 

-0 .5  

-1.0 

1 

CA--.-- -- 3 1  1 

-0 1 -  
O/' ' 2  --- 4 - - 6 0 10 

N.4 

Y - x  y -- ,c n 

(d I (e) 

Figure 1. (a)  1 / @ ( 1 2  for axially symmetric N-string, N =  1-5. ( b )  E(R) for axially sym- 
metric N-string, N = 1-5. ( c )  Energy density 8 of axially symmetric N-string, N = 1-5. 
( d )  Energy density of axially symmetric 1 -  and 2-strings. (e )  Energy density of axially 
symmetric 3- and 4-strings. 
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expansion gives 

w =  1 + ~ C ’ r ’ + O ( r 4 ) ~ ~ ~ @ ~ ~ 2 = - c ’ + o ( r 2 ) .  

Note also that the region of positive energy density is concentrated in an annulus 
around the origin, which is always contained in the region where 11CD\12S 0. A simple 
estimate of the size of this region is given by the asymptotic formula (2.1 1) ;  we have 

\ \ @ \ I 2 -  c’(1 -2n/cr),  :. 1 1 @ ( ( 2  = o at r = 2n/c  

in excellent agreement with the more precise numerical results. 
So, the n-string differs appreciably from the vacuum in a disc of radius 2n units 

of characteristic length, centred at the origin; it is natural to identify this as the ‘core’ 
region of the n-string. 

We defer the proof of non-singularity of the axially symmetric n-string to § 5 ,  
where it is proved in a more general context. 

4. The separated 2-string solution 

In the previous section, we found that the behaviour of the axially symmetric N-string 
solution was more or less analogous to the behaviour of the axially symmetric N- 
monopole solution. In contrast, we shall find in this section that the behaviour of the 
separated 2-string solution is remarkably different to that of the separated 2-monopole 
solution. 

Again, the actual construction of the solutions is much simpler than in the monopole 
case. We take 

41 =exP [i(ax3+ bXdlAo(Xi, X2) 

where A. is chosen to be the sum of two Ao’s for axially symmetric 1-strings situated 
at different points, i.e. 

A0 = alo(cr1) +Plo(crz)  

where (Y, P are positive real constants, equivalent up to a scale factor, and 

rl =[(XI - hl)’+ ( ~ 2 -  kl)’I1/’, r2 = [ ( X I  - hJ’+ ( ~ 2  - k2)’I1/’. 
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where 

5') = a 2 [ ~ o ( ~ r 1 ) 2  - ~ ~ ( c r ~ ) ~ ]  + P ' [ I , ( C ~ ~ ) ~  - 1(crd2I 

+ ap[21,( crl )lo( cr2) - ( t25;' + t1 ti' ) 11 ( cr1 )I1 ( crJ1. 

5 2 5 ; '  +&ti1 = t1&+52$1=2 Re t 1 f 2 = 2  Re &ti' 

+ p2[10(cr2)2 - l1 ( c T ~ ) ~ ]  

But, since & ,  t 2 e  U(1), we have 

and 

5'" = a 2[~o(crl)2 - 

e U ( 1 )  implies /Re t1t1'1S 1. Hence 

+2 .P [lo( crl )Io( cr2) - Re( t1 ti' 1, ( crl ) 1, ( crz) I 

+2aP[10( c r m  CTZ) - 11 (cr1 1 1 1  ( cr2)l 

2 a2[r0( - zI ( crl )'I + p2[ l0(  ~ r ~ ) ~  - I,( U')'] 

> O ,  

since &(x) > Zl(x) 2 0 for all x. 
Hence we have proved our solution is non-singular. 
Without loss of generality, let us consider displacements along the xI axis, centred 

at the origin, i.e. let 

rl =[(xl  +h)2+x:]"2, r2=[(x1-h)2+x:]1'2. 

Then Re tl& = ( r2 - h 2 ) /  rl r2,  so 

6") = a2[IO(crl)'  - Il(crl 121 + p 2 [ ~ 0 ( c r 2 ) 2  - ~ ~ ( c t ~ ) ' ]  (4.2) 

+ .P W O (  cr1) Io( cr2) - [( r2 - h 'I/ rl blIl ( cr1)II ( cr2) 1. 
We have studied the separated 2-string solution (4.2) numerically, for various 

values of the separation parameter h, with the characteristic length c-I = 1. We define 
the physical locations of the strings to be the points at which ( ( @ I l 2  is a minimum. For 
values of h greater than about three units of characteristic length, the physical locations 
coincide with the peaks in the energy density; for values of h much less than three 
units of characteristic length, the ring-like structure is still evident, with the energy 
density being peaked at a distance greater than the physical separation. 

1 ) @ ) 1 2  and 8 are plotted along the x1 axis in figure 2 for h = 2.5, 5.0, 7.5, 10.0 and 
in figure 3 for h = 20, 30, 40, 50, with a = p = 1.  Note that (I@((' always takes the 
minimum value -1 at points *hphys on the x1 axis; we call hphys the physical separation 
parameter. We find numerically 

hphys - h 
and for larger values of h, we have 

for O s  h s 0.6 

1 0.9 0.16 -0.24 
3 1.5 0.342 -0.167 

10 2.0 0.687 -0.257 
30 2.5 0.875 -0.296 
50 2.7 0.925 -0.309 
80 2.9 0.951 -0.316 
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1 0 -  

5 .  

-5 -4 \-3 \ -2 -1 - 0 5 -  

-1 O r  
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K X  ,ir5 

l 1 @ 1 1 *  B 
1 0  

-0 4 

-\ 

-0 4 

1 o t  I 

Figure 2. and P for the separated 2-string solution with h = 2.5,  5.0, 7.5, 10.0. 

-6 II@ 112 

h = 2 0  

-0 5 
-1 0 

h:30 

h = 4 0  

- 5 w - 3  -2 
- 0 4 L  

-0 4 

Figure 3. ( /@(I2 and 8 for the separated 2-string solution with h = 20, 30, 40, 50. 
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So, for large h, hphys varies extremely slowly with h. Also, note that the energy 
density profile of an isolated single string has 

8,,, = 0.5,  gmin = -0.02 

so the energy density of the separated solution is clearly not converging to that of two 
isolated 1-strings; it is much more strongly peaked along the x1 axis. This is in sharp 
contrast to the case of the separated 2-monopole solution, where the physical separation 
is always of the same order as the separation parameter (O’Raifeartaigh et al 1982), 
and the solution approaches the profiles of two isolated monopoles at large separation. 

Variation of the parameter P / a  does not spoil this behaviour; it has the effect of 
translating the profiles along the x1 axis, with the actual separation of the strings 
remaining unchanged. Variation of p / a  also has the curious effect of decreasing 8,,, 
and raising the minimum of 1 ( @ 1 1 2  above -1; this effect, however, is suppressed for 
large values of h. 

The string profiles along the x2 axis are even more surprising. Whereas the 
separation along the x1 axis varies very slowly with h, there is an elongation along the 
x2 axis, roughly of the same order as h. This behaviour is clearly shown in the contour 
graphs of figures 4 and 5 ,  and the corresponding surface plots in figures 6 and 7. Thus 
we reach the remarkable conclusion that, at least within this class of separated solutions, 
it is impossible to approach the field configurations of two isolated 1-strings. 

The above behaviour can be reproduced analytically. Set c = 1 and change notation 
to  x = xl, y = x2. Recall the asymptotic expansions of I y ( r ) :  

h :  0.5 h = l  0 

/ --. 

h s l  5 

I m., I 

i :I 
h=2.0 

I I I 1  

,i I 

Figure 4. Contour plots of energy density for the separated 2-string at h = 0.5, 1.0, 1.5, 
2.0. At contour n, % = -0.1 +0.02n. 
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h.40 

I 

h = 8 0  

Figure 5. Contour plots of energy density for the separated 2-string, h = 4.0 and 8.0. At 
contour n, 8 = -0.3+0.05n. 

h=O 5 h: l  0 

h : l  5 h.2 0 

Figure 6. Surface plots of energy density for the separated 2-string with h = ( a )  0.5, ( b )  
1.0, ( c )  1.5, ( d )  2.0. 

We use these to perform an asymptotic expansion for large h, or equivalently, for 
small x, y. More explicitly, assume x, y = O(1og h ) ,  and ignore terms of order x 2 / h 2 ,  
y2/h2. After some algebra, we find 

(e2"/2nh2) exp( y2/h)[(a e"-P e-")'+ap(4h+ l)], h + a .  (4.3) G(2) - 
If we reparametrise a, P as follows 

a = 6 e-"o, P = 6 e%+x, = In ~ / a  



702 A D Burns 

h.4 0 

Y .  

Figure 7. Surface plotsof energy density for the separated 2-string with h = 4.0 and 8.0. 

then (4.3) becomes 

2 ( ~ 5 ~ e ~ ~ / . r r h ~ )  exp( y'/ h)[sinh2(x -xo) + (h  +$)I, h + m  (4.4) $ 2 )  - 
so, for large h, varying P / a  merely translates the profiles a distance xo along the x 
axis. From (4.4) we obtain, setting xo=O: 

In 6(2)- y2/h+ln[sinh2x+(h+$)]+constant, 

l+2s inh2x  
(h  + sinh' x)'' 

V2 In 6(2) - 2h 

Hence we obtain 
1 + 2  sinh2 x 

(h  + sinh' x ) ~ '  
II@11' - 1 - 4h h + a .  (4.5) 

So, to this approximation, 11@.1)' is independent of y. So, 

#D112/ay - 0 for y = O(1og h), 

Also, we easily deduce from (4.5) that 

as h + m .  

/ / @ 2 1 1 , , n  - -1 at sinh' x - h, as h + w .  

Hence 

sinh' hphys - h as h-m, 

i.e. 

hphys - log 2v'% as h + W. 

5. The separated N-string configurations and construction of patching functions 

First let us consider the general form of the patching function for solutions with our 
dimensional reduction. We have 
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and in twistor variables (2.1) we have 

p + v = x 4 + g 2 i ( y / 5 +  y l ) .  

A b ,  v, 5) = exp[a(p - .)I exp[ib(p + v ) l f ( l )  

We deduce that A is guaranteed to have the form (*) if, in twistor coordinates, 

(5.1) 

where f is an arbitrary function analytic in an annular neighbourhood 1 - E < 151 < 1 + E .  

Of course, not all choices of f are guaranteed to give non-singular solutions. 
Let us calculate the form of the patching function for the axially symmetric N-string 

configurations. Note that since these are all obtained by direct integration of the a ,  
ansatz for the 1-string, they all have the same generating function A. Recall 

Ak = exp[i(ax3+ b ~ ~ ) ] t ~ ~ ~ ( c r ) ,  

t = ( i r / c ) ( x l  - ix2) / rEU(l ) .  

Hence we have 

t k  
~ ( x ,  5) = exp[i(aX3+ bX4)l c (-) Ik(cr) 

k=-oc  5 
and using the generating function for Bessel functions 

we immediately deduce 

~ ( x ,  5) = exp[i(ax,+ bx4)I exp[kr ( t /5+5/ t ) I .  

A ( &  5) = e x p [ 4 p  - .)I exp[ibb + .)I. 
Inserting the expression for 6, and rearranging the exponentials, we finally obtain 

(5 .2 )  

So, comparing with (5.1), we see that the axially symmetric solutions have the 

The obvious ansatz for separated N-string configurations which generalises that 
simplest possible patching function, with f( 5) = 1. 

for the separated 2-string is to take 

41 = exp[i(ax,+ ~ X ~ ) I ~ ~ ( X ~ ,  x2), 

hl= c d o ( C r / ) ,  

r l=[ (x-x \ f ’ )2+(xz-xz  ( 1 )  ) 2 ] 1/2  , 

n 

ai ’ 0 ,  
/ = 1  

and then integrate this up to the nth ansatz. 
We find 

(5.3) 



704 A D Burns 

Let pi, V I  be p, Y evaluated at y = y,, z = 0, i.e. 

pi = t h i j j , /  l, v1 = jJJ2iy11. 

Then writing El  = p -pi, C1 = v - vi, the generating function for (5.3) is given by 

where 

= i aI e x p [ i (  42 Tyil-:)]. 
I = 1  

(5.4) 

Finally, let us prove that (5.3) gives a non-singular field configuration in the a, 
ansatz. This will prove as a special case the non-singularity of the axially symmetric 
n-string configurations. 

Let D'"'= exp[in(ax3+ bx4)]6,'"' be the determinant formed from (5.3). By 
analogy with the proof of positivity of E'", we may rearrange the expression for 5'"' 
so that it contains sums of complex conjugate pairs 

5+ f = 2 Re 5, 5 E  U(1). 

These are bounded by *2, and we easily deduce that it is sufficient to prove 

for all values of rl, . . . , r,,. 

Proof. (Due to S Rouhani). Using the integral representation 

dBexp(rcosB+inB) 

we obtain 

where 

1 n- i )e ,  . . .  
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Since 8'"' is real, the integration only picks up the real part of 0'"' so we have, 
using Weyl's character formula (Prasad 1981, Prasad and Rossi 1980), 

de, . . . de, exp(r, cos 8, + . . . + r, cos @,)n 2 sin2 
i#j 

since the integrand is positive. 

It is most likely that we have not yet described all non-singular solutions. Note 
first that the separated n-string ansatz (5.3) is manifestly non-singular in the a, ansatz, 
where it would give rise to a 'distorted' l-string solution. Moreover, the above proof 
of non-singularity actually applies in any ansatz ak, not only k = n. Also, it is quite 
likely that there exist separated string solutions more akin to the case of monopoles, 
where the asymptotic field at large separation is like that of isolated l-strings. Work 
is in progress to check these possibilities. 
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Appendix. Atiyah-Ward ansiitze for axially symmetric N-strings 

In order to complete the description of the a,  ansatz, and to integrate up to the a, 
anzatze, we need to define a sequence of functions A k ( r )  by 

Ao=Io(cr),  

A k = - y --la y A k t l  Y-'agAk+i r-'arAk+l, 

i.e. A k + l  = J r drAk (ignoring constants of integration). 
Using a fundamental property of Bessel functions 

+ [ ( r  dr)r'Iv(r) = r ' + l I u + l ( r ) ,  

we obtain 
A k ( r )  = ( r k  / C k ) l k  ( Cr). 

Define y = a +ib, 7 = a -ib. 

Lemma 1. The a, ansatz is solved by the functions 

4, = exp[i(ax3 + bx4)lAo, 

p1 = exp[i(ax3+ bx4)](i7/J2jj)Al, 

i j l  = exp[i(ax3+ bx4)](iy/J2y)Al. 
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and these are clearly satisfied by ( A l ) .  

easily seen to be equivalent to 
We must also check the other two equations pl.= =-4],?,  ii,,i = -41.y. These are 

2 2ydyA0 = 2yd,Ao = raA,/ar = c A I  

which is an easy consequence of property (*) of Bessel functions. 

Lemma 2. The ak ansatz is solved by the functions 

A. = exp[i(ax, + bx4)Ao, 

A-k = exp[i(ax3+ ~ ~ , ) I ( - ~ ~ / J T ~ ) ~ . A ~ ,  

ProoJ Use induction on k ;  k = 1 follows from lemma 1,  since Po = Cpl, A I  = P I ,  

First check the formula for Ak, for k > 1.  Since a y A k + l  =a, Ak, we have, by the 
A-1 = - p i .  

inductive hypothesis, 

a r A k + l  = az{exp[(i/d2)(yz + ~ ~ ) l ( i y / J ? y ) ~ ~ ~ }  

={exp[i(ax, + bx4)1(iy/J5y) k' lAk+d,y 

and this is clearly satisfied by 

A k + 1  = eXp[i(UX,+ bX,)](iy/J2Y)k+'Ak+1. 

We must also check the equation d,Ak = - a i A k + l .  But 

a i ~ k + l  = exp[i(ax3+ bx4)l(ir/J5y)'((-C2/2y)Ak+~, 

8 , A k  = eXp[i( ax3 + bXq)](i y/J2y) ( 1 / 2y) (2y8,A k 2 k A k ) ,  

so it is sufficient to check that 

r8,Ak = 2 k h k  + c 2 i l k + l  

which, again, is an easy consequence of property (*) of Bessel functions. 
The formula for A-k follows similarly. 

Substituting Ak = (rk/ck)Ik(Cr) in (A2), we obtain 

A k  = exp[i(ax, + ~ x ~ ) ] & ~ I ~ ( c ~ ) ,  

A - k  = exp[i(ax3+ b ~ ~ ) ] t - ~ ~ ( c r ) ,  

5 = (iyr/J2cy) E ~ ( 1 ) .  

where 

Using routine manipulations of determinants, (A3) gives us equations (3.1). 
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